Abstract
We present a portable imaging flow cytometer comprising a smartphone, a small-footprint optical framework, and a PDMS-based microfluidic device. Flow cytometric analysis is performed in a sheathless manner via elasto-inertial focusing with a custom-written Android program, integrating a graphical user interface (GUI) that provides a high degree of user control over image acquisition. The proposed system offers two different operational modes. First, "post-processing" mode enables particle/cell sizing at throughputs of up to 67 000 particles/s. Alternatively, "real-time" mode allows for integrated cell/particle classification with machine learning at throughputs of 100 particles/s. To showcase the efficacy of our platform, polystyrene particles are accurately enumerated within heterogeneous populations using the post-processing mode. In real-time mode, an open-source machine learning algorithm is deployed within a custom-developed Android application to classify samples containing cells of similar size but with different morphologies. The flow cytometer can extract high-resolution bright-field images with a spatial resolution <700 nm using the developed machine learning-based algorithm, achieving classification accuracies of 97% and 93% for Jurkat and EL4 cells, respectively. Our results confirm that the smartphone imaging flow cytometer (sIFC) is capable of both enumerating single particles in flow and identifying morphological features with high resolution and minimal hardware.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.