Abstract

The existence of pesticide residues in the hydrosphere, biosphere, and anthroposphere can cause acute or chronic diseases and deteriorate the environment. Therefore, efficient detection of pesticide residues is of great significance to prevent food poisoning, control food pollution, and protect human lives by recognizing their distribution and concentration. Herein, a novel smartphone-coupled three-layered paper-based microfluidic chip is proposed as a facile platform to detect the pesticides. The stereoscopic capillary-driven fluid transport is enabled by the three-layered microfluidic chip configuration. The detection mechanism is based on the enzyme inhibition reaction and the chromatic reaction. The detection results are obtained by a smartphone and figured out by colorimetric quantitative analysis. Taking advantages of the above merits, we demonstrate the utilization of this smartphone-coupled three-layered paper-based microfluidic chip for the effective analysis of typical pesticides (profenofo and methomyl). The linear ranges of profenofo and methomyl are 0.27-2.1μmol L-1 and 0.14-1.85μmol L-1, respectively. The corresponding limits of detection in the chips are 55nM and 34nM, respectively. The paper-based chips are also highly cost-effective with a total cost of 0.082 ¥ per piece. It can be anticipated that this technique will open new avenues for the mass fabrication of paper-based microfluidic chips and provide state-of-the-art methods in the field of analytical chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.