Abstract

It is of great significance to develop a highly sensitive and intuitive virus detection tool. A portable platform is constructed for quantitative detection of viral DNA based on the principle of fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) and graphene oxide nanosheets (GOs) in this work. To implement a high sensitivity and low detection limit, GOs are modified by magnetic nanoparticles to prepare magnetic graphene oxide nanosheets (MGOs). Among them, the application of MGOs can not only eliminate the background interference, but also amplify the fluorescence intensity to a certain extent. Whereafter, a simple carrier chip based on photonic crystals (PCs) is introduced to realize a visual solid-phase detection, which also amplifies the luminescence intensity of the detection system. Finally, under the application of the 3D printed accessory and smartphone program of red-green-blue (RGB) evaluation, the portable detection can be completed simply and accurately. In a word, this work proposes a portable DNA biosensor with the triple functions of quantification, visualization and real-time detection can be used as a high-quality viral detection strategy and clinical diagnosis method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.