Abstract

Gas sensor-embedded smartphones would offer the opportunity of on-site tracking of gas molecules for various applications, for example, harmful air pollutant alarms or noninvasive assessment of health status. Nevertheless, high power consumption and difficulty in replacing malfunctioned sensors as well as limited space in the smartphone to host the sensor restrain the relevant advancements. In this article, we create a smartphone case-based sensing platform by integrating the functional units into a smartphone case, which performs a low detection limit of 117 ppb to acetone and high specificity. Particularly, dimming glass-regulated light fidelity (Li-Fi) communication is successfully developed, allowing the sensing platform to operate with relatively low power consumption (around 217 mW). Experimental proof on harmful gas sensing and potential clinic application is implemented with the sensing platform, demonstrating satisfactory sensing performance and acceptable health risk pre-warning accuracy (87%). Thus, the developed smartphone case-based sensing platform would be a good candidate for realizing harmful gas alarms and noninvasive assessment of health status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.