Abstract
Camera sensor identification can have numerous forensics and authentication applications. In this work, we follow an identification methodology for smartphone camera sensors using properties of the Dark Signal Nonuniformity (DSNU) in the collected images. This requires taking dark pictures, which the users can easily do by keeping the phone against their palm, and has already been proposed by various works. From such pictures, we extract low and mid frequency AC coefficients from the DCT (Discrete Cosine Transform) and classify the data with the help of machine learning techniques. Traditional algorithms such as KNN (K-Nearest Neighbor) give reasonable results in the classification, but we obtain the best results with a wide neural network, which, despite its simplicity, surpassed even a more complex network architecture that we tried. Our analysis showed that the blue channel provided the best separation, which is in contrast to previous works that have recommended the green channel for its higher encoding power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.