Abstract

Determination of metal ions in water samples, especially harmful heavy metal like mercury or essential elements like iron and copper, is an important work in environmental monitoring. Herein, we report a smartphone-based three-channel ratiometric fluorescence device for simultaneous determination of Hg2+, Fe3+ and Cu2+ in environmental samples on site. It was based on the fluorescence quench mechanism of Hg2+, Fe3+ and Cu2+ to three kinds of doped carbon quantum dots, which were prepared by pyrolysis methods using ammonium citrate, citric acid + 1,10-phenanthroline, and EDTA + thiourea as initial materials, respectively. By using a multivariate calibration method, the mutual interference among Hg2+, Fe3+ and Cu2+ can be corrected. Under the optimized conditions, the limits of detection for Hg2+, Cu2+ and Fe3+ are 3, 0.5, and 30 nM, respectively. The proposed device offers the advantage of portability, sensitivity and reliability for field analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call