Abstract
A simple, portable device for the detection of NO2– via a fluorescence method was developed. The proposed device consisted of a dark box containing a blue LED as a low-power excitation light source and a smartphone with a mobile application for RGB analysis as a light detector. Detection was mediated by using synthesized cetyltrimethylammonium bromide-stabilized gold nanoparticles (CTAB-AuNPs). The CTAB-AuNPs were etched with NO2– to yield Au3+, which catalyzes the oxidation of o-phenylenediamine (OPD) in the presence of H2O2 to generate 2,3-diaminophenazine (DAP). Triton X-100 (TX-100) micelles were introduced to improve the DAP fluorescence emission. The fluorescence intensity of DAP was recorded by the smartphone in terms of RGB intensity, which was correlated with the NO2– concentration. This method provided a wide linear working concentration range (0.5–100 μM), a limit of detection of 0.17 μM and excellent selectivity for NO2– over other anions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.