Abstract
Viruses pose serious infectious disease threats to humans and animals. To significantly decrease the mortality and morbidity caused by virus infections, there is an urgent need of sensitive and rapid point-of-care platforms for virus detection, especially in low-resource settings. Herein, we developed a smartphone-based point-of-care platform for highly sensitive and selective detection of the avian influenza virus based on nanomaterial-enabled colorimetric detection. The 3D nanostructures, which serve as a scaffold for antibody conjugation to capture the avian influenza virus, are made on PDMS herringbone structures with a ZnO nanorod template. After virus capture, the on-chip gold nanoparticle-based colorimetric reaction allows virus detection by naked eyes with a detection limit of 2.7 × 104 EID50/mL, which is one order of magnitude better than that of conventional fluorescence-based ELISA. Furthermore, a smartphone imaging system with data processing capability further improves the detection limit, reaching down to 8 × 103 EID50/mL. The entire virus capture and detection process can be completed in 1.5 h. We envision that this point-of-care microfluidic system integrated with smartphone imaging and colorimetric detection would provide a fast, cheap, sensitive, and user-friendly platform for virus detection in low-resource settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.