Abstract
AbstractExisting artificial intelligence solutions typically operate in powerful platforms with high computational resources availability. However, a growing number of emerging use cases such as those based on unmanned aerial systems (UAS) require new solutions with embedded artificial intelligence on a highly mobile platform. This paper proposes an innovative UAS that explores machine learning (ML) capabilities in a smartphone‐based mobile platform for object detection and recognition applications. A new system framework tailored to this challenging use case is designed with a customized workflow specified. Furthermore, the design of the embedded ML leverages TensorFlow, a cutting‐edge open‐source ML framework. The prototype of the system integrates all the architectural components in a fully functional system, and it is suitable for real‐world operational environments such as seek and rescue use cases. Experimental results validate the design and prototyping of the system and demonstrate an overall improved performance compared with the state of the art in terms of a wide range of metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.