Abstract

Cervical cancer can be treated and cured if diagnosed at an early stage. Optical devices, developed on smartphone-based platforms, are being tested for this purpose as they are cost-effective, robust, and field portable, showing good efficiency compared to the existing commercial devices. This study reports on the applicability of a 3D printed smartphone-based spectroscopic device (3D-SSD) for the early diagnosis of cervical cancer. The proposed device has the ability to evaluate intrinsic fluorescence (IF) from the collected polarized fluorescence (PF) and elastic-scattering (ES) spectra from cervical tissue samples of different grades. IF spectra of 30 cervical tissue samples have been analyzed and classified using a combination of principal component analysis (PCA) and random forest (RF)-based multi-class classification algorithm with an overall accuracy above 90%. The usage of smartphone for image collection, spectral data analysis, and display makes this device a potential contender for use in clinics as a regular screening tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call