Abstract
Although active research has recently been conducted on received signal strength (RSS) fingerprint-based indoor localization, most of the current systems hardly overcome the costly and time-consuming offline training phase. In this paper, we propose an autonomous and collaborative RSS fingerprint collection and localization system. Mobile users track their position with inertial sensors and measure RSS from the surrounding access points. In this scenario, anonymous mobile users automatically collect data in daily life without purposefully surveying an entire building. The server progressively builds up a precise radio map as more users interact with their fingerprint data. The time drift error of inertial sensors is also compromised at run-time with the fingerprint-based localization, which runs with the collective fingerprints being currently built by the server. The proposed system has been implemented on a recent Android smartphone. The experiment results show that reasonable location accuracy is obtained with automatic fingerprinting in indoor environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.