Abstract

Cuff-based blood pressure measurement lacks comfort and convenience. Here, we examined whether blood pressure can be determined in a contactless manner using a novel smartphone-based technology called transdermal optical imaging. This technology processes imperceptible facial blood flow changes from videos captured with a smartphone camera and uses advanced machine learning to determine blood pressure from the captured signal. We enrolled 1328 normotensive adults in our study. We used an advanced machine learning algorithm to create computational models that predict reference systolic, diastolic, and pulse pressure from facial blood flow data. We used 70% of our data set to train these models and 15% of our data set to test them. The remaining 15% of the sample was used to validate model performance. We found that our models predicted blood pressure with a measurement bias±SD of 0.39±7.30 mm Hg for systolic pressure, -0.20±6.00 mm Hg for diastolic pressure, and 0.52±6.42 mm Hg for pulse pressure, respectively. Our results in normotensive adults fall within 5±8 mm Hg of reference measurements. Future work will determine whether these models meet the clinically accepted accuracy threshold of 5±8 mm Hg when tested on a full range of blood pressures according to international accuracy standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.