Abstract
BackgroundFluorescence detection is employed in high-performance liquid chromatography (HPLC) due to its high specificity and sensitivity. However, it is often limited by expensive components and bulkiness. Recently, advances in technology and electronics have led to the development of smartphones that can serve as portable recording, analysis, and monitoring tools. Smartphone-based detection provides advantages of cost effectiveness, rapid signal/data processing, and the display of results on a handhold monitor. The combination of smartphone-based detection with HPLC can offer unique features that are beneficial in overcoming limitations of commercial fluorescence detectors. (90) ResultsA miniaturized and low-cost HPLC fluorescence detector based on a smartphone is introduced for the detection of six fluorescent molecules. The smartphone is able to capture emitted fluorescence in video format while MATLAB code is used for data processing to provide chromatograms based on different detection channels. A custom designed double-channel flow cell was utilized to enable simultaneous detection of fluorescent compounds with different excitation wavelengths. The detector consists of a lab-made flow cell, monochromatic LEDs as the light source, 3D printed housing and connector box, fiber optic cables, and a smartphone. The effects of flow cell geometry, channel width and light slit diameter, as well as a comparison of different flow cell manufacturing techniques, are studied and discussed. The validated system was successfully applied to samples from diverse water sources, yielding spiking recoveries within the range of 91.7% and 109.7%. (141) SignificanceThis study introduces the first smartphone-based fluorescence detector for HPLC with cost-effective and customizable flow cells, allowing for the simultaneous detection of fluorescent compounds with different excitation wavelengths and offering a potential solution for the analysis of co-eluting compounds. Beyond its user-friendly interface and low-cost, smartphone detection in HPLC provides tremendous opportunities in further miniaturizing chromatographic instrumentation while offering high sensitivity and can be expanded to other mechanisms of detection. (70)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.