Abstract
Current wireless-inertial fusion positioning systems widely adopt empirical propagation models of wireless signals and filtering algorithms such as the Kalman filter or the particle filter. However, empirical models of system and noise usually have lower accuracy in a practical positioning scenario. The biases of predetermined parameters would enlarge the positioning error through layers of systems. Instead of dealing with empirical models, this paper proposes a fusion positioning system based on an end-to-end neural network, along with a transfer learning strategy for improving the performance of neural network models for samples with different distributions. Verified by Bluetooth-inertial positioning in a whole floor scenario, the mean positioning error of the fusion network was 0.506 m. The proposed transfer learning method improved the accuracy of the step length and rotation angle of different pedestrians by 53.3%, the Bluetooth positioning accuracy of various devices by 33.4%, and the average positioning error of the fusion system by 31.6%. The results showed that our proposed methods outperformed filter-based methods in challenging indoor environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.