Abstract
Earlier work on machine learning for automated reasoning mostly relied on simple, syntactic features combined with sophisticated learning techniques. Using ideas adopted in the software verification community, we propose the investigation of more complex, structural features to learn from. These may be exploited to either learn beneficial strategies for tools, or build a portfolio solver that chooses the most suitable tool for a given problem. We present some ideas for features of term rewrite systems and theorem proving problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.