Abstract

This paper is aimed at the usage of an augmented reality assisted system set up on the smart-glasses for training activities. Literature review leads us to a comparison among related technologies, yielding that Mask Regions with Convolutional Neural Network (R-CNN) oriented approach fits the study needs. The proposed method including (1) pointing gesture capture, (2) finger-pointing analysis, and (3) virtual tool positioning and rotation angle are developed. Results show that the recognition of object detection is 95.5%, the Kappa value of recognition of gesture detection is 0.93, and the average time for detecting pointing gesture is 0.26 seconds. Furthermore, even under different lighting, such as indoor and outdoor, the pointing analysis accuracy is up to 79%. The error between the analysis angle and the actual angle is only 1.32 degrees. The results proved that the system is well suited to present the effect of augmented reality, making it applicable for real world usage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.