Abstract
Vehicles serve as mobile nodes in a high-mobility MANET technique known as the vehicular ad hoc network (VANET), which is used in urban and rural areas as well as on highways. The VANET, based on 5G (5G-VANET), provides advanced facilities to the driving of vehicles such as reliable communication, less end-to-end latency, a higher data rate transmission, reasonable cost, and assured quality of experience (QoE) for delivered services. However, the crucial challenge with these recent technologies is to design a real-time multimedia traffic shaping that maintains smooth connectivity under the unpredictable change of channel capacity and data rate due to handover for rapid vehicle mobility among roadside units. This research proposes a smart real-time multimedia traffic shaping to control the amount and the rate of the traffic sent to the 5G-VANET based on distributed reinforcement learning (RMDRL). The proposed mechanism selects the accurate decisions of coding parameters such as quantization parameters, group of pictures, and frame rate that are used to manipulate the required traffic shaping of the multimedia stream on the 5G-VANET. Furthermore, the impact of the aforementioned three coding parameters has been comprehensively studied using five video clips to achieve the optimal traffic rate value for real-time multimedia streaming on 5G communication. The proposed algorithm outperforms the baseline traffic shaping in terms of peak-signal-to-noise-ratio (PSNR) and end-to-end frame delay. This research will open new comfortable facilities for vehicle manufacturing to enhance the data communication system on the 5G-VANET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.