Abstract

BackgroundSunflower (Helianthus annuus L.) is an important oilseed crop grown widely in various areas of the world. Classical genetic studies have been extensively undertaken for the improvement of this particular oilseed crop. Pertaining to this endeavor, we developed a “chemically induced mutated genetic resource for detecting SNP by TILLING” in sunflower to create new traits.ResultsTo optimize the EMS mutagenesis, we first conducted a “kill curve” analysis with a range of EMS dose from 0.5% to 3%. Based on the observed germination rate, a 50% survival rate i.e. LD50, treatment with 0.6% EMS for 8 hours was chosen to generate 5,000 M2 populations, out of which, 4,763 M3 plants with fertile seed set. Phenotypic characterization of the 5,000 M2 mutagenised lines were undertaken to assess the mutagenesis quality and to identify traits of interest. In the M2 population, about 1.1% of the plants showed phenotypic variations. The sunflower TILLING platform was setup using Endo-1-nuclease as mismatch detection system coupled with an eight fold DNA pooling strategy. As proof-of-concept, we screened the M2 population for induced mutations in two genes related to fatty acid biosynthesis, FatA an acyl-ACP thioesterase and SAD the stearoyl-ACP desaturase and identified a total of 26 mutations.ConclusionBased on the TILLING of FatA and SAD genes, we calculated the overall mutation rate to one mutation every 480 kb, similar to other report for this crop so far. As sunflower is a plant model for seed oil biosynthesis, we anticipate that the developed genetic resource will be a useful tool to identify novel traits for sunflower crop improvement.

Highlights

  • Sunflower (Helianthus annuus L.) is an important oilseed crop grown widely in various areas of the world

  • The de novo synthesis of fatty acids in plant storage tissues is an intraplastidial process in which the multienzyme fatty acid synthase (FAS) complex catalyses a series of enzymatic reactions

  • This molecule is the substrate for stearoyl-ACP desaturase (SAD) that introduces a double bond in the carbon chain to produce oleoyl-ACP (18:1-ACP)

Read more

Summary

Introduction

Sunflower (Helianthus annuus L.) is an important oilseed crop grown widely in various areas of the world. Sunflower (Helianthus annuus L.), 2n =34, belongs to family Asteraceae, with an estimated genome size of 3000 Mbp, and is the fourth most important oilseed crop [1] It is a native of North America [2] and widely cultivated in the world with an annual production of about 24 million tonnes (www.fao.org). The main products of intraplastidial fatty acid synthesis are, first, palmitoyl-ACP (16:0-ACP), which is further elongated by the FAS II complex to produce stearoyl-ACP (18:0-ACP) This molecule is the substrate for stearoyl-ACP desaturase (SAD) that introduces a double bond in the carbon chain to produce oleoyl-ACP (18:1-ACP). To address the needs of the confectionery industry for saturated fatty acids, high stearic acid content oils have been developed mainly by genetic modification of the FatA stearoyl-ACP thioesterase and the SAD stearoyl-ACP desaturase [10,11]. Stearic fatty acid is considered cardiovascular neutral and do not modify the plasmatic cholesterol levels in humans [12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.