Abstract

This study’s goal is to utilize robust control theory to effectively mitigate structural oscillations in smart structures. While modeling the structures, two-dimensional finite elements are used to account for system uncertainty. Advanced control methods are used to completely reduce vibration. Complete vibration suppression is achieved using advanced control techniques. In comparison to traditional control approaches, Hinfinity techniques offer the benefit of being easily adaptable to issues with multivariate systems. It is challenging to simultaneously optimize robust performance and robust stabilization. One technique that approaches the goal of achieving robust performance in mitigating structural oscillations in smart structures is H-infinity control. H-infinity control empowers control designers by enabling them to utilize traditional loop-shaping techniques on the multi-variable frequency response. This approach enhances the robustness of the control system, allowing it to better handle uncertainties and disturbances while achieving desired performance objectives. By leveraging H-infinity control, control designers can effectively shape the system’s frequency response to enhance stability, tracking performance, disturbance rejection, and overall robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.