Abstract

This work presents a new kind of shape memory alloy (SMA) based composite actuators that can retain its shape in multiple configurations without continuous energy consumption by changing locally between a high-stiffness and a low-stiffness state. This was accomplished by embedding fusible alloy (FA) material, Ni-chrome (Ni–Cr) wires and SMA wires in a smart soft composite (SSC) structure. The soft morphing capability of SMA-based SSC structures allows the actuator to produce a smooth continuous deformation. The stiffness variation of the actuator was accomplished by melting the embedded FA structures using Ni–Cr wires embedded in the FA structure. First, the design and manufacturing method of the actuator are described. Then, the stiffness of the structure in the low and high-stiffness states of the actuator were measured for different applied currents and heating durations of the FA structure and results show that the highest stiffness of the actuator is more than eight times that of its lowest stiffness. The different shape retention capability of the actuator were tested using actuators with one or two segments and these were compared with a numerical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.