Abstract

The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and computation-intensive mobile applications. Mobile devices with limited resources face more severe capacity constraints than ever before. As a new concept of network architecture and an extension of cloud computing, Mobile Edge Computing (MEC) seems to be a promising solution to meet this emerging challenge. However, MEC also has some limitations, such as the high cost of infrastructure deployment and maintenance, as well as the severe pressure that the complex and mutative edge computing environment brings to MEC servers. At this point, how to allocate computing resources and network resources rationally to satisfy the requirements of mobile devices under the changeable MEC conditions has become a great aporia. To combat this issue, we propose a smart, Deep Reinforcement Learning based Resource Allocation (DRLRA) scheme, which can allocate computing and network resources adaptively, reduce the average service time and balance the use of resources under varying MEC environment. Experimental results show that the proposed DRLRA performs better than the traditional OSPF algorithm in the mutative MEC conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.