Abstract

There is today ample evidence that fiber Bragg gratings (FBGs) distributed along a railway track can provide robust axle counting and bring numerous assets compared to competing technologies in this practical environment. This work brings two relevant originalities with respect to the state-of-the-art solutions. First, a study of the strain distribution in the rail cross-section is performed to determine the sensitivity according to the charge and the position on the rail. Secondly, the technology is deployed along the rail track as a smart object where the sensor head is composed of four FBG wavelength-division-multiplexed in a single telecommunication-grade optical fiber and interrogated by a miniaturized read-out device. Two FBGs ensure the detection of the train direction and another two bring the required redundancy to reach a safety integrity level (SIL) 4. The read-out unit has been specifically developed for the application and contains a vertical-cavity surface-emitting laser (VCSEL) and a photodiode driven by a high-speed microprocessor unit that processes the data and communicates the useful information, i.e., the number of axles. On-field tests confirm that the proposed approach makes the installation process easier while it democratizes the technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call