Abstract
The advancement to Urban 4.0 requires urban digitization and predictive maintenance of infrastructure to improve efficiency, durability, and quality of life. This study aims to integrate intelligent technologies for the predictive maintenance of photovoltaic panel systems, which serve as essential smart city renewable energy sources. In addition, we employ vision transformers (ViT), a deep learning architecture devoted to evolving image analysis, to detect anomalies in PV systems. The ViT model is pre-trained on ImageNet to exploit a comprehensive set of relevant visual features from the PV images and classify the input PV panel. Furthermore, the developed system was integrated into a web application that allows users to upload PV images, automatically detect anomalies, and provide detailed panel information, such as PV panel type, defect probability, and anomaly status. A comparative study using several convolutional neural network architectures (VGG, ResNet, and AlexNet) and the ViT transformer was conducted. Therefore, the adopted ViT model performs excellently in anomaly detection, where the ViT achieves an AUC of 0.96. Finally, the proposed approach excels at the prompt identification of potential defects detection, reducing maintenance costs, advancing equipment lifetime, and optimizing PV system implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.