Abstract

Abstract Tier II/III SMART protocol for dispersant use requires placing fluorometers in the water and towing them under a slick by boat. To protect the health of SMART teams, boats typically remain at least 2 miles away from slicks during aerial dispersant treatment. After the spray completes, the SMART boats transit into oil slicks. The time between completion of spray and initiation of SMART monitoring can be > 30 minutes. In 30 minutes, dispersed oil plumes will significantly dilute making them difficult to detect based on fluorescence. Further, we identified a separate issue. That is, oil fluoresces primarily because of the aromatic constituents in the oil and many of the aromatics in oil are at least somewhat volatile and water soluble. Modeling found that these aromatics leach from the oil prior to the application of dispersant. So, even if fluorometers were immediately underneath dispersing oils slicks, the loss of aromatics from the oil challenges SMART. The combination of aromatic leaching and rapid plume dilution limits the ability of the Tier II/III SMART protocol to identify fluorescence signals above the recommended five times background. This means that effectively dispersed oil slicks might not be accurately characterized. What is needed is a monitoring technique that can be applied rapidly and targets some other characteristic of the oil. Polarized infrared (IR) cameras can measure both the thermal differences between slicks and water and the difference in emissivity when IR energy is emitted by sheens / slicks relative to water. These cameras can be easily flown on dispersant spray/support planes. They can be used to image oil slicks before, during, and after dispersant spray operations. Effectively dispersed oil slicks will have a significant change in their thermal signature and IR emissivity as the oil transfers from the water surface into the water column. Polarized infrared cameras can be an effective tool for monitoring dispersant operations. They can be deployed continually during slick dispersion providing a longitudinal and synoptic record of the dispersion process. In this paper, we describe modeling to estimate the water-column concentrations of aromatic hydrocarbons (both mono and polycyclic) from plumes after applying dispersants to an oil slick. In addition, we describe testing of a polarized IR camera at the OHMSETT tank during dispersant testing. We use the modeling to identify the need for modifying SMART and the OHMSETT testing to show that polarized IR cameras can meet this need.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call