Abstract

pH- and temperature-sensitive hydrogels, based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) copolymers, were prepared by γ-irradiation and characterized in order to examine their potential use in biomedical applications. The influence of comonomer ratio in these smart copolymers on their morphology, mechanical and thermal properties, biocompatibility and microbe penetration capability was investigated. The mechanical properties of copolymers were investigated using the dynamic mechanical analysis (DMA), while their thermal properties and morphology were examined by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The morphology, mechanical and thermal properties of these hydrogels were found to be suitable for most requirements of biomedical applications. The in vitro study of P(HEMA/IA) biocompatibility showed no evidence of cell toxicity nor any considerable hemolytic activity. Furthermore, the microbe penetration test showed that neither Staphylococcus aureus nor Escherichia coli passed through the hydogel dressing; thus the P(HEMA/IA) dressing could be considered a good barrier against microbes. All results indicate that stimuli-responsive P(HEMA/IA) hydrogels have great potential for biomedical applications, especially for skin treatment and wound dressings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.