Abstract

As a result of the progressive implantation of the Industry 4.0 paradigm, many industries are experimenting a revolution that shipyards cannot ignore. Therefore, the application of the principles of Industry 4.0 to shipyards are leading to the creation of Shipyards 4.0. Due to this, Navantia, one of the 10 largest shipbuilders in the world, is updating its whole inner workings to keep up with the near-future challenges that a Shipyard 4.0 will have to face. Such challenges can be divided into three groups: the vertical integration of production systems, the horizontal integration of a new generation of value creation networks, and the re-engineering of the entire production chain, making changes that affect the entire life cycle of each piece of a ship. Pipes, which exist in a huge number and varied typology on a ship, are one of the key pieces, and its monitoring constitutes a prospective cyber-physical system. Their improved identification, traceability, and indoor location, from production and through their life, can enhance shipyard productivity and safety. In order to perform such tasks, this article first conducts a thorough analysis of the shipyard environment. From this analysis, the essential hardware and software technical requirements are determined. Next, the concept of smart pipe is presented and defined as an object able to transmit signals periodically that allows for providing enhanced services in a shipyard. In order to build a smart pipe system, different technologies are selected and evaluated, concluding that passive and active RFID (Radio Frequency Identification) are currently the most appropriate technologies to create it. Furthermore, some promising indoor positioning results obtained in a pipe workshop are presented, showing that multi-antenna algorithms and Kalman filtering can help to stabilize Received Signal Strength (RSS) and improve the overall accuracy of the system.

Highlights

  • After the triumph of the lean production systems in the 1970s, the outsourcing manufacturing phenomenon of the 1990s, and the automation that took off in the 2000s, the fourth major disruption in modern manufacturing is Industry 4.0

  • This article described the selection and validation of the necessary technology to perform improved traceability and location of the pipes used in the construction of ships

  • The proposed smart pipe system is a novel example of the benefits of Cyber-Physical Systems (CPS), providing a reliable remote monitoring platform to leverage strategic applications and enhancements in the shipyard environment

Read more

Summary

Introduction

After the triumph of the lean production systems in the 1970s, the outsourcing manufacturing phenomenon of the 1990s, and the automation that took off in the 2000s, the fourth major disruption in modern manufacturing is Industry 4.0 This industrial revolution can be defined as the phase in the digitalization of the sector [1], driven by several emerging technologies: the ubiquitous use of sensors, the stunning rise in data volume, the increasing computational power, and connectivity; the emergence of analytics, cloud computing and business-intelligence capabilities; new forms of human-machine interaction such as augmented-reality systems; and advances in transferring digital instructions to the physical world, such as Cyber-Physical Systems (CPS), Internet of Things (IoT), robotics, and 3-D printing.

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call