Abstract

Poly(ether-ether-ketone) (PEEK)s are a group of polymeric biomaterials with excellent mechanical properties, chemical stability, and nonmagnetism. In the present study, we propose a novel self-initiated surface graft polymerization technique, using which we demonstrate the fabrication of a highly hydrophilic and biocompatible nanometer-scale layer on the surfaces of PEEK and carbon fiber-reinforced PEEK (CFR-PEEK) by the photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) without using any photoinitiators. The thus formed hydrophilic and smooth 100-nm-thick PMPC-grafted layer caused a significant reduction in the sliding friction of the bearing interface because the thin water film and hydrated PMPC layer acted as extremely efficient lubricants (so-called fluid-film lubrication or hydration lubrication). Fluid-film lubrication suppressed the direct contact of the counter-bearing surface with the PEEK substrate and thus reduced the frictional force. A PMPC-grafted layer is therefore expected to significantly increase bearing durability. Furthermore, the PMPC-grafted layer shows unique phenomena, e.g., it prevents damage of the metal counter surface regardless of the carbon fiber content of CFR-PEEK. Smart PEEK using the self-initiated surface graft polymerization of MPC should lead to development of novel orthopedic bearings.Keywords: poly(ether-ether-ketone), 2-methacryloyloxyethyl phosphorylcholine, surface modification, photopolymerization, joint replacement, wear mechanism

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.