Abstract
Pathological brain detection is an automated computer-aided diagnosis for brain images. This study provides a novel method to achieve this goal.We first used synthetic minority oversampling to balance the dataset. Then, our system was based on three components: wavelet packet Tsallis entropy, extreme learning machine, and Jaya algorithm. The 10 repetitions of K-fold cross validation showed our method achieved perfect classification on two small datasets, and achieved a sensitivity of 99.64 ± 0.52%, a specificity of 99.14 ± 1.93%, and an accuracy of 99.57 ± 0.57% over a 255-image dataset. Our method performs better than six state-of-the-art approaches. Besides, Jaya algorithm performs better than genetic algorithm, particle swarm optimization, and bat algorithm as ELM training method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.