Abstract
This paper presents a novel numerical algorithm implemented in a unique methodology for the control of smart single-phase autoreclosure and comprehensive fault analysis for overhead lines using synchronized measurement technology. The algorithm improves on existing methodologies for adaptive single-phase autoreclosure, fault location, detailed disturbance records analysis, and fault data management. It is based on line current and voltage data sampled at both line terminals and synchronized sampling of all analogue input variables is assumed in this paper. The proposed algorithm is derived in the spectral domain and based on the application of the Discrete Fourier Transform. The electrical arc as a source of higher harmonics is included in the complete fault model and represents the starting point for the development of the new algorithm. The algorithm's distinctive feature is that it can determine both the fault arc and the fault resistance. The presence or absence of an arc resistance is used to determine the nature of the fault. The algorithm can be applied to both short and long lines. The algorithm is thoroughly tested using electromagnetic transient simulations of an overhead line connected between two active networks, as well as with field data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.