Abstract

Here, based on oxygen-dependent photodynamic therapy (PDT) and oxygen-consumed oxidative phosphorylation of cancer tissues, we designed and developed a nanosystem (named CyI&Met-Liposome, LCM) to co-encapsulate the photosensitizer CyI and mitochondrial respiration inhibitor metformin (Met) as a PDT enhancer. We synthesized nanoliposomes encapsulating Met and CyI with excellent photodynamic/photothermal and anti-tumor immune properties using a thin film dispersion method. Confocal microscopy and flow cytometry were used to assess the cellular uptake, PDT, photothermal therapy (PTT) and immunogenicity of nanosystem in vitro. Finally, two tumor models in mice were constructed to investigate the tumor suppression and immunity in vivo. The resulting nanosystem relieved hypoxia in tumor tissues, enhanced PDT efficiency, and amplified antitumor immunity induced by phototherapy. As a photosensitizer, CyI effectively killed the tumor by generating toxic singlet reactive oxygen species (ROS), while the addition of Met reduced oxygen consumption in tumor tissues, thereby evoking an immune response via oxygen-boosted PDT. Both in vitro and in vivo results illustrated that LCM effectively restricted the respiration of tumor cells to reduce tumor hypoxia, thus providing continuous oxygen for enhanced CyI-mediated PDT. Furthermore, T cells were recruited and activated at high levels, providing a promising platform to eliminate the primary tumors and synchronously realize effective inhibition of distant tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.