Abstract

In the past decade, golf has stimulated people’s great interest and the number of golf players has increased significantly. Therefore, how to train a golfer to make a perfect swing has attracted extensive research attentions. Among these researches, the most important step is to capture and reconstruct the swing movement in a transportable and non-intrusive way. Restricted by the development of present depth imaging devices, the initial captured swing movement may not be acceptable due to occlusions and mixing up of body parts. In this paper, to restore motion information from self-occlusion and reconstruct 3D golf swing from low resolution data, a Dynamic Bayesian Network (DBN) model based golf swing reconstruction algorithm is proposed to increase the capture accuracy considering the spatial and temporal similarities of swing between different golfers. A Smart Motion Reconstruction system for Golf swing, SMRG, is presented based on the DBN model with a popular depth imaging device, Kinect, as capturing device. Experimental results have proved that the proposed system can achieve comparable reconstruction accuracy to the commercial optical motion caption (OMocap) system and better performance than state of art modification algorithms using depth information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.