Abstract

The objective of this study is to develop a prototype for smart monitoring of underground rail transit by local energy generation. This technology contributes to powering rail-side devices in off-grid and remote areas. This paper presents the principles, modeling, and experimental testing of the proposed system that includes two subsystems: (1) an electromagnetic energy generator with DC-DC boost converter (2) a rail-borne wireless sensor node with embedded accelerometers and temperature/humidity sensors and (3) a data processing algorithm based on the Littlewood–Paley (L-P) wavelet. Field testing results, power consumption, L-P wavelet transform methods, and feasibility analysis are reported. One application scenario is described: the electromagnetic energy harvester together with the DC-DC boost converter is used as a local energy source for powering the sensor nodes of a Wireless Sensor Network (WSN), and the abnormal signals of out-of-round wheels are identified based on the measured rail acceleration signals and L-P wavelet analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.