Abstract

In this study, a series of Mn-modified HZSM-5 samples were synthesized using the solid-state ion-exchange method, and the effects of the manganese loading amount, calcination temperature, reaction temperature, and gas components on mercury removal efficiency were systematically explored. Given that the mass ratio of HZSM-5 to KMnO4 and the calcination and reaction temperatures were set to 10:2.6 and 400 and 150 °C, Hg0 removal efficiency could reach a peak value of 96.4% when exposed to the flue gas containing 5% O2 and N2 as the balance. Among the various gas components, O2 and NO showed a positive impact on Hg0 removal; Hg0 removal efficiency could even reach ca. 100% when O2 and NO were simultaneously introduced. In contrast, the introduction of SO2 led to a decline of Hg0 removal efficiency by ca. 16%. In addition, Hg0 removal efficiency could still retain ca. 92% of that for the fresh sample after six regeneration and reuse cycles, which is indicative of a satisfactory stability and renewability. Finally, Mars–Maessen mechanisms dominated in the mercury chemical adsorption process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.