Abstract

In the present study, we show how acrylamide-based microgels can be employed for the uptake and release of the drug β-aescin, a widely used natural product with a variety of pharmacological effects. We show how aescin is incorporated into the microgel particles. It has an important influence on the structure of the microgels, by reducing their natural network-density gradient in the swollen state. Moreover, temperature-dependent measurements reveal how the incorporation of aescin stabilizes the microgel particles, while the volume phase transition temperature (VPTT) is almost constant, which is very important for the intended drug release. Finally, it is shown that upon increase of the temperature above the VPTT the particles are able to release aescin from their network, encouraging the use of this particular drug delivery system for hypothermia treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.