Abstract

Smart pH and thermoresponsive, poly(N-isopropyl acrylamide co acrylic acid) (PNIPAM-co-PAA) microgel particles are used as microreactors to prepare hybrids of gold (Au) and silver (Ag) nanoparticles (PNIPAM-co-PAA@AgAu) using a facile two steps in situ approach. These hybrid particles are characterized using the transmission electron microscope (TEM), UV–VIS spectrometer, and dynamic light scattering (DLS). TEM directly confirms the successful loading of metal nanoparticles onto microgels and the hybrid particles have a narrow size distribution. UV–VIS spectroscopy at different concentration ratios of silver/gold chloride strongly reveals the presence of plasmon peaks of both silver and gold between 10% to 25% of gold chloride concentration. DLS studies demonstrate that these hybrid microgels exhibit both pH and thermoresponsive properties comparatively with a lesser swelling than the pure microgels without loaded nanoparticles. Further, the catalytic activities of PNIPAM-co-PAA@AgAu hybrids are studied through a reduction of 4-nitrophenol (4-NP)-to-4-aminophenol (4-AP) in the presence of sodium borohydride at different pH. Interestingly, these hybrid particles exhibit modulating catalytic activity with variation in pH. The reduction kinetics decreases with increasing pH and the corresponding apparent rate constant exhibits two linear regimes with one at pH below pKa and another at pH above pKa of acrylic acid. This pH-modulated catalytic behavior of PNIPAM-co-PAA@AgAu hybrids is discussed based on pH-induced swelling/deswelling transition, the core–shell nature of microgel particles, and its intrinsic interplay with the diffusion of nitrophenols within the microgel network. Finally, our results are compared and discussed in the context of previously studied catalytic activities in different polymer-metal hybrids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.