Abstract

In recent years, many buildings have been fitted with smart meters, from which high-frequency energy data is available. However, extracting useful information efficiently has been imposed as a problem in utilizing these data. In this study, we analyzed district heating smart meter data from 61 buildings in Copenhagen, Denmark, focused on the peak load quantification in a building cluster and a case study on load shifting. The energy consumption data were clustered into three subsets concerning seasonal variation (winter, transition season, and summer), using the agglomerative hierarchical algorithm. The representative load profile obtained from clustering analysis were categorized by their profile features on the peak. The investigation of peak load shifting potentials was then conducted by quantifying peak load concerning their load profile types, which were indicated by the absolute peak power, the peak duration, and the sharpness of the peak. A numerical model was developed for a representative building, to determine peak shaving potentials. The model was calibrated and validated using the time-series measurements of two heating seasons. The heating load profiles of the buildings were classified into five types. The buildings with the hat shape peak type were in the majority during the winter and had the highest load shifting potential in the winter and transition season. The hat shape type’s peak load accounted for 10.7% of the total heating loads in winter, and the morning peak type accounted for 12.6% of total heating loads in the transition season. The case study simulation showed that the morning peak load was reduced by about 70%, by modulating the supply water temperature setpoints based on weather compensation curves. The methods and procedures used in this study can be applied in other cases, for the data analysis of a large number of buildings and the investigation of peak loads.

Highlights

  • Energy-saving and energy decarbonization have become part of energy strategies in many countries, as part of climate change mitigation efforts

  • The report launched by the Danish Commission on Climate Change Policy in 2010 stated that, by 2050, an energy system independent of fossil fuels is achievable in Denmark without high costs [2]

  • The categorization of the heating load profiles was performed for winter and eachofbuilding, the Profile categorization of theand heating load profiles was performed for winter and

Read more

Summary

Introduction

Energy-saving and energy decarbonization have become part of energy strategies in many countries, as part of climate change mitigation efforts. In Demark, the electricity and heating should be 100% covered by renewable energy by 2035 [1]. The report launched by the Danish Commission on Climate Change Policy in 2010 stated that, by 2050, an energy system independent of fossil fuels is achievable in Denmark without high costs [2]. Such targets require imperative paradigm shifts to integrate energy systems and optimal operation on both energy supply and demand sides. Buildings account for 40% of energy consumption in developed countries [3]. In Scandinavian countries, heating needs account for a large share of energy consumption.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.