Abstract
Reinforced polymers have gained a significant interest in the research community in recent years due to their enhanced performance as compared to their parent polymers. Nanosized reinforcement-based polymer composites have shown a considerable enhancement in performance as compared to micro-/macro-sized fillers. But achieving a high degree of filler alignment in nanocomposites via conventional manufacturing techniques continues to be a challenging task. Additive manufacturing (AM) is a possible solution to this challenge and has undergone a significant development in recent years. AM is an efficient technique to fabricate nanocomposites in complex shapes which uses a layer-by-layer method to fabricate materials and thereby eliminates the need for multi-step processing and the use of fasteners/joints to fabricate complex structures. Due to a wide range of properties and the existence of carbon in a variety of forms, carbon filler-based polymer matrix composites are suitable for applications in several technical sectors. AM of carbon-based structures and fiber-reinforced polymer composites enables the production of highly customized parts with a high degree of filler alignment. AM techniques which are generally employed for the fabrication of carbon-based fillers/fiber-reinforced polymer composites are fused deposition modeling, stereolithography, direct ink writing and selective laser sintering. Although AM techniques are efficient, some critical issues such as voids and defects between interlayers, the low adhesion strength between filaments, part curling and insufficient curing of layers need to be addressed to utilize its full potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.