Abstract

The interplay of smart light bulbs (equipped with wireless controllable LEDs) and mobile sensors (embedded in wearable devices, such as smart watches and spectacles) enables a wide range of interactive lighting applications. One notable example is a smart lighting control system that provides automated illuminance management by wearable sensors close to end-users. In this paper, an energy-efficient smart lighting control system is developed using mobile light sensors for measuring local illuminance and assisting smart light bulbs to coordinate the brightness adjustments, while meeting users' heterogeneous lighting preferences. A pivotal challenge in these systems is attributed to the presence of oblivious mobile sensors hampered by the uncertainties in their relative locations to light bulbs, unknown indoor environment and time-varying background light sources. To cope with these hindrances, we devise an effective model-agnostic control algorithm inducing continuous adaptive coordination of oblivious mobile sensors without complete knowledge of dynamic operational environment and the associated parameters. The proposed algorithm is corroborated extensively under diverse settings and scenarios in a proof-of-concept smart lighting testbed featuring programmable light bulbs and smartphones, deployed as light sensing units. Lastly, we discuss some practical limitations of the proposed control approach, along with possible solutions, and conclude by outlining promising directions for future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.