Abstract

Irrigation forms one of the mainstays of agriculture and food production. As a result of outdated strategies in developing and developing countries, much water is wasted in this process. In this article, we have established a regulatory model of irrigation management to put a check on this waste of water by providing a good irrigation system for farming. The prototype Smart Automatic Irrigation Controller (SAIC) has two operating units, viz. Wireless Sensor Unit and Wireless Information Processing Unit . The purpose of the sensor unit is to measure climate and soil conditions and to calculate the actual water loss due to evapotranspiration. Processing unit considers this calculation and performs the regulatory action required to control workers by delivering the right amount of water to the farm. A combination of basic rules is included in the decision-making table. The model is initially developed and validated in the process of testing the effectiveness. The results obtained showed the potential to compensate for water loss by almost 100%. The regulator experienced a 27% reduction in water use and a 40% increase in crop yields. The prototype is connected to a cloud server for data storage and remote access to control. The device is efficient, inexpensive, and usable so that end users can use it easily and comfortably. The model is new and unique in the sense that it can plan irrigation for all types of crops, in all climatic conditions of all soil types while feeding the right combination of soil growth stage in the inference engine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call