Abstract

Ice accretion affects the performance and control of an aircraft and in extreme situations can lead to incidents and accidents. However, changes in performance and control are difficult to sense. As a result, the icing sensors currently in use sense primarily ice accretion, not the effect of the ice. No processed aircraft performance degradation information is available to the pilot. In this paper, the Smart Icing System research program is reviewed and progress towards its development reported. Such a system would sense ice accretion through traditional icing sensors and use modern system identification methods to estimate aircraft performance and control changes. This information would be used to automatically operate ice protection systems, provide aircraft envelope protection and, if icing was severe, adapt the flight controls. All of this would be properly communicated to and coordinated with the flight crew. In addition to describing the basic concept, this paper reviews the research conducted to date in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors. In addition, the flight simulation development is reviewed, as well as the Twin Otter flight test program that is being conducted in cooperation with NASA Glenn Research Center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.