Abstract

Smart buildings, equipped with controllable devices and energy management systems are expected to be substantial parts of the future energy grids. In this paper, a Reinforcement Learning (RL)-based method is developed for the energy scheduling of a smart home's energy storage system, which is also equipped with a photovoltaic system. The proposed scheme aims to minimize the electricity cost of the smart home; the overall problem is formulated as a Markov decision process, and it is solved by applying the Deep Deterministic Policy Gradient (DDPG). The main advantage of the proposed method is that increases the degree of similarity between the train set and the test set, through data clustering, achieving superior energy schedules than the existing RL-based approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.