Abstract

This paper presents a concept and implementation of modern smart monitoring and control system for building automatization. The system is designed to enable significant reduction of energy consumption and carbon footprint by increasing the energy efficiency of the building under control. The system consists of a Linux-based remotely accessible main embedded control unit, a custom designed programmable logic controller named littlePLC, and a propriatery low-power Wireless Sensor Network (WSN). The energy flow is optimized by using a Model Predictive Control (MPC) algorithm that runs on the main control unit. The main control unit communicates with littlePLC, which serves as an interface that controls the parameters and state of HVAC systems in the building. The feedback information for MPC is gathered by means of the WSN, which consists of various sensor node types, such as temperature, air pressure, humidity, VOC and CO 2 . The WSN nodes are connected in a star type network topology, with a communication HUB connected to the main control unit. The information gathered by WSN are used in the MPC algorithm in order to calculate and estimate the requirements for heat corrections, with respect to ventilation and weather predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call