Abstract

Smart Grid (SG) technology represents an unprecedented opportunity to transfer the energy industry into a new era of reliability, availability, and efficiency that will contribute to our economic and environmental health. On the other hand, the emergence of electric vehicles (EVs) promises to yield multiple benefits to both power and transportation industry sectors, but it is also likely to affect the SG reliability, by consuming massive energy. Nevertheless, the plug-in of EVs at public supply stations must be controlled and scheduled in order to reduce the peak load. This paper considers the problem of plug-in EVs at public supply stations (EVPSS). A new communication architecture for SG and cloud services is introduced. Scheduling algorithms are proposed in order to attribute priority levels and optimize the waiting time to plug-in at each EVPSS. To the best of our knowledge, this is one of the first papers investigating the aforementioned issues using new network architecture for SG based on cloud computing. We evaluate our approach via extensive simulations and compare it with two other recently proposed works, based on real supply energy scenario in Toronto. Simulation results demonstrate the effectiveness of the proposed approach when considering real EVs charging–discharging loads at peak-hours period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.