Abstract

In recent years, the integration of Distributed Energy Resources (DERs) and communication networks has presented significant challenges to power system control and protection, primarily as a result of the emergence of smart grids and cyber threats. As the use of grid-connected solar Photovoltaic (PV) systems continues to increase with the use of intelligent PV inverters, the susceptibility of these systems to cyber attacks and their potential impact on grid stability emerges as a critical concern based on the inverter control models. This study explores the cyber-threat consequences of selectively targeting the components of PV systems, with a special focus on the inverter and Overcurrent Protection Relay (OCR). This research also evaluates the interconnectedness between these two components under different cyber-attack scenarios. A three-phase radial Electromagnetic Transients Program (EMTP) is employed for grid modeling and transient analysis under different cyber attacks. The findings of our analysis highlight the complex relationship between vulnerabilities in inverters and relays, emphasizing the consequential consequences of affecting one of the components on the other. In addition, this work aims to evaluate the impact of cyber attacks on the overall performance and stability of grid-connected PV systems. For example, in the attack on the PV inverters, the OCR failed to identify and eliminate the fault during a pulse signal attack with a short duration of 0.1 s. This resulted in considerable harmonic distortion and substantial power losses as a result of the protection system’s failure to recognize and respond to the irregular attack signal. Our study provides significant contributions to the understanding of cybersecurity in grid-connected solar PV systems. It highlights the importance of implementing improved protective measures and resilience techniques in response to the changing energy environment towards smart grids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.