Abstract

As the next-generation power system, smart grid presents challenges to enterprises in managing and analyzing massive data, meeting complex operational and decision-making demands, and predicting future power demand for grid optimization. This paper aims to proposed a fusion algorithm for smart grid enterprise decision-making and economic benefit analysis, enhancing the accuracy of decision-making and predictive capability of economic benefits. The proposed method combines techniques such as Long Short-Term Memory (LSTM), Generative Adversarial Networks (GAN), and edge computing. The LSTM model is employed to model historical data of the smart grid. The GAN model generates diverse scenarios for future power demand and economic benefits. The proposed method is evaluated on four public datasets, including the ENTSO-E Dataset, and outperforms several traditional algorithms in terms of prediction accuracy, efficiency, and stability. Notably, on the ENTSO-E Dataset, the proposed algorithm achieves a reduction of over 46.6% in FLOP, and a decrease in inference time by over 48.3%, and an improvement of 38% in MAPE. The novel fusion algorithm proposed in this paper demonstrates significant advantages in accuracy and predictive capability, providing a scientific basis for smart grid enterprise decision-making and economic benefit analysis while offering practical value for real-world applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.