Abstract

Solar energy is renewable, clean, and friendly to the environment. Utilizing solar energy is a major step toward reducing global warming because it reduces pollution. The smart city concept presents a novel idea for renewable energy, such as Photovoltaic (PV) technologies. The smart campus is one of the areas of focus in smart cities. In this context, the smart campus is a term used to refer to the teaching environment and application service systems, where dynamic interaction between people and the surrounding service develops intelligent teaching, learning, and campus life environment. However, some researchers refer to the smart campus to replace the current energy sources with more sustainable and environmentally friendly solutions. This paper presents an overview of a smart green campus's concept by integrating the concepts of green energy generation and smart system application. This would enhance the building efficiency, utilize more renewable energy technology and advanced digital solution, minimize the environmental impact and operation cost. This paper uses the Higher Colleges of Technology (HCT) campus in Sharjah Men campus (SMC) as a use case study to demonstrate the vision of the smart green campus. The key areas of the campus considered in the study are campus building, streets and outdoor areas, and campus services. The proposed concept of a smart green campus will focus on the IoT-enabled sensor devices proposed to each potential application in the campus. The proposed vision of the smart green campus serves the community better by providing different innovative systems for the people and facilitating the country's development. Furthermore, the vision caters to the core infrastructure of the campus, such as the buildings, the roads, and the Mosque, while providing its members with a decent quality of life, a clean and sustainable environment, and innovative systems. The case study shows a 63.7% saving in electricity when using solar energy to generate electricity and implementing the innovative applications to the smart green campus. Also, it shows a reduction in the emission and carbon dioxide CO2 released into the air as a direct result of electricity generation to 0.02.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call