Abstract
This study addresses the pressing issue of energy consumption and efficiency in the Kingdom of Saudi Arabia (KSA), a region experiencing growing demand for energy resources. Temperature control plays a vital role in achieving energy efficiency; however, traditional control systems may struggle to adapt to the non-linear and time-varying characteristics of the problem. To tackle this challenge, a fuzzy petri net (FPN) controller is proposed as a more suitable solution that combines fuzzy logic (FL) and petri nets (PN) to model and simulate complex systems. The main objective of this research is to develop an intelligent energy-saving framework that integrates advanced methodologies and air conditioning (AC) systems to optimize energy utilization and create a comfortable indoor environment. The proposed system incorporates user identification to authorize individuals who can set the temperature, and FL combined with PN is utilized to monitor and transmit their preferred temperature settings to a PID controller for adjustment. The experimental findings demonstrate the effectiveness of integrating the FPN controller with a convertible frequency AC compressor in significantly reducing energy consumption by 94% compared to using the PN controller alone. The utilization of the PN controller alone resulted in a 25% reduction in energy consumption. Conversely, employing a fixed-frequency compressor led to a 40% increase in energy consumption. These results emphasize the advantages of integrating FL into the PN model, as it effectively reduces energy consumption by half, highlighting the potential of the proposed approach for enhancing energy efficiency in AC systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.