Abstract

In this paper, we propose a novel traffic control architecture which is based on fog computing paradigm and reinforcement leaning technologies. We firstly provide an overview of this framework and detail the components and workflows designed to relieve traffic congestion. These workflows, which are connecting traffic lights, vehicles, Fog nodes and traffic cloud, aim to generate traffic light control flow and communication flow for each intersection to avoid a traffic jam. In order to make the whole city’s traffic highly efficient, the fog computing paradigm and a distributed reinforcement learning algorithm is designed to overcome communication bandwidth limitation and local optimal traffic control flow, respectively. We also demonstrate that our framework outperforms traditional systems and provides high practicability in future research for building the intelligent transportation system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.