Abstract
Abstract Crops are being affected by uneven climatic conditions leading to decreased agricultural yield. This affects global agricultural economy. Moreover, condition becomes even worst when the crops are infected by any disease. Also, increasing population burdens farmers to increase yield. This is where modern agricultural techniques and systems are needed to detect and prevent the crops from being effected by different diseases. In this paper, we propose a web based tool that helps farmers for identifying fruit disease by uploading fruit image to the system. The system has an already trained dataset of images for the pomegranate fruit. Input image given by the user undergoes several processing steps to detect the severity of disease by comparing with the trained dataset images. First the image is resized and then its features are extracted on parameters such as color, morphology, and CCV and clustering is done by using k-means algorithm. Next, SVM is used for classification to classify the image as infected or non-infected. An intent search technique is also provided which is very useful to find the user intension. Out of three features extracted we got best results using morphology. Experimental evaluation of the proposed approach is effective and 82% accurate to identify pomegranate disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.