Abstract

In recent times, the energy calibration methods are universally expanding with the goal of effectuating, reliably operating, and managing the utility system. The growing demand for power in the current environment has necessitated the mandatory installation of energy meters, as well as the development of new methods for calibrating meter readings and governing the effective use of energy resources. AMR (Automatic Meter Reading system) is one such modernization. This employs analogue or digital energy meters with the assistance of smart meters. Currently, energy scaling is done by hand, which is a timeconsuming process in the world of day-to-day networking demand and also requires skilled labour. The concept of AMR Systems is to overcome complexities in the rapidly growing field of energy management. This article proposes a smart energy meter based on IoT to detect the power theft. The proposed model consists of Arduino UNO, ESP8266, AC713 current sensors, and so on. The AC713 senses current usage with the help of the ESP32, which is then passed to the IoT platform. Though AMR is a very effective method, it costs the proxy of existing energy meters by SEM (Smart energy meters), which is highly inefficient. As a result, the proposed method focuses on detecting the power theft caused by public tampering. The proposed model is programmed by using a BLYNK software and simulated in PROTEUS software. The proposed system is then validated by using the simulated results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call